
Inferential Stats with R

Welcome to the Course!

What you will learn in this course

- 1. t-tests: independent and dependent
- 2. ANOVA: mainly the one-way ANOVA
- 3. chi-square
- 4. correlation
- 5. regression
- 6. reliability (internal consistency)
- 7. reporting statistics in R
- 8. testing parametric assumptions

What you will need for this course

- 1. R and RStudio!
- 2. Dataset: college.csv
- 3. Packages:
- tidyverse
- broom
- rstatix
- janitor
- correlation
- Im.beta
- psych
- and more!

A quick overview of tidyverse

There are a few tidyverse functions we'll use:

- dplyr::select()
- dplyr::filter()
- dplyr::mutate()
- tidyr::pivot_longer()

How this course will work

- Each video will walk through the topic, showing you relevant R code and output.
- At the end of each video will be an opportunity for you to practice what you've learned.
- You can check your answers to the Your Turn activities on the R for the Rest of Us website.

59.12,42826.99,0,0,0,0 Intróduction to the 15.94,679 dataset 115.94,66938.9,0

5.94,66122.201

AQ 86421.0

college.csv

college <- read_csv("../data/college.csv")</pre>

college

id	athlete	smokes	live_on_campus	race	gender	grade_class
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>
1	0	0	1	Black	Male	Freshman
2	0	0	0	White	Female	Sophomore
3	1	0	1	White	Male	Senior
4	1	0	1	Hispanic	Male	Freshman
5	0	0	1	White	Male	Junior
1-5 of 300 rows 1-7 of 31 columns				Previo	us 1 <u>2</u> <u>3</u>	<u> 4 5 6 60 Next</u>

Variable	Stats / Values	Freqs (% of Valid)	Graph
athlete [numeric]	Min : 0 Mean : 0.3 Max : 1	0:209(69.7%) 1:91(30.3%)	
smokes [numeric]	Min : 0 Mean : 0.2 Max : 1	0:236(78.7%) 1:64(21.3%)	
live_on_campus [numeric]	Min : 0 Mean : 0.6 Max : 1	0: 122(40.7%) 1: 178(59.3%)	
race [character]	 Asian Bi-Racial Black Hispanic Native White 	13 (4.3%) 9 (3.0%) 40 (13.3%) 51 (17.0%) 4 (1.3%) 183 (61.0%)	

Variable	Stats / Values	Freqs (% of Valid)	Graph
gender [character]	1. Female 2. Male 3. Trans*	154 (51.3%) 132 (44.0%) 14 (4.7%)	
grade_class [character]		82 (27.3%) 71 (23.7%) 71 (23.7%) 76 (25.3%)	
political [character]	1. Democrat 2. Other 3. Republican	171 (57.0%) 4 (1.3%) 125 (41.7%)	
height [numeric]	Mean (sd) : 69.3 (3.5) min < med < max: 61 < 69 < 83 IQR (CV) : 5 (0.1)	20 distinct values	

Variable	Stats / Values	Freqs (% of Valid)	Graph
iq [numeric]	Mean (sd) : 104 (9.8) min < med < max: 78 < 104 < 125 IQR (CV) : 13 (0.1)	46 distinct values	
hs_gpa [numeric]	Mean (sd) : 3.1 (0.3) min < med < max: 2.3 < 3.1 < 3.9 IQR (CV) : 0.4 (0.1)	300 distinct values	
age [numeric]	Mean (sd) : 20.8 (2.8) min < med < max: 17 < 20 < 28 IQR (CV) : 3 (0.1)	12 distinct values	

Generated by <u>summarytools</u> 0.9.6 (<u>R</u> version 4.0.2) 2020-09-02

Variable	Stats / Values	Freqs (% of Valid)	Graph
act_reading [numeric]	Mean (sd) : 18.2 (6.5) min < med < max: 1 < 18 < 36 IQR (CV) : 9 (0.4)	33 distinct values	
act_science [numeric]	Mean (sd) : 17.7 (6.3) min < med < max: 1 < 18 < 36 IQR (CV) : 9 (0.4)	33 distinct values	
act_mathematics [numeric]	Mean (sd) : 20.4 (6.4) min < med < max: 1 < 21 < 36 IQR (CV) : 9 (0.3)	32 distinct values	
act_english [numeric]	Mean (sd) : 18.5 (6.4) min < med < max: 1 < 18 < 36	32 distinct values	

Satisfaction with Life Scale

variable	mean	min	max
<chr></chr>	<dp>></dp>	<dbl></dbl>	<dbl></dbl>
swls_time1_1	2.920000	1	5
swls_time1_2	2.906667	1	5
swls_time1_3	2.913333	1	5
swls_time1_4	2.950000	1	5
swls_time1_5	2.896667	1	5
swls_time2_1	2.943333	1	5
swls_time2_2	2.970000	1	5
swls_time2_3	2.973333	1	5
swls_time2_4	3.026667	1	5
swls_time2_5	2.950000	1	5
1-10 of 10 rows			

Variable	Stats / Values	Freqs (% of Valid)	Graph
exam_1 [numeric]	Mean (sd) : 51.8 (19.1) min < med < max: 0 < 52 < 100 IQR (CV) : 26 (0.4)	78 distinct values	
exam_2 [numeric]	Mean (sd) : 49.9 (19.7) min < med < max: 0 < 50 < 100 IQR (CV) : 28 (0.4)	80 distinct values	
exam_3 [numeric]	Mean (sd) : 57.1 (19.4) min < med < max: 0 < 57 < 100 IQR (CV) : 28 (0.3)	81 distinct values	

Generated by <u>summarytools</u> 0.9.6 (<u>R</u> version 4.0.2) 2020-09-02

Your Turn

You'll be working with the college dataset to run all your analyses.

- 1. Create a new project. Make sure you put it somewhere you'll be able to find it again later!
- 2. Download the dataset "college.csv" from https://bit.ly/college-dataset
- 3. Create a new R script file or RMarkdown document where you'll do all of your inferential statistics
- 4. Import the spreadsheet into a dataframe college using readr::read_csv()

Independent t-test

Independent vs dependent t-test

Independent t-test

- Between-subjects
- Independent samples
- Examine the mean difference between two unrelated groups (e.g., males and females, a group of mothers and a group of daughters)

Dependent t-test

- Within-subjects
- Dependent or paired samples
- Examine the mean difference between two related groups (e.g., same group at two time points, pairs of mothers and daughters)

Both t-tests are performed using the t_test() function in the rstatix package.

Independent t-test in R

dat %>%
 t_test(DV ~ IV)

An example

Let's try running an independent samples t-test with our college dataset.

Let's test whether weight at time 2 differs by smoking status.

dat %>% t_test(DV ~ IV)					ege %>% test(weight_2 ~	smokes)	
.y. <chr></chr>	group1 <chr></chr>	group2 <chr></chr>	n1 <int> <</int>	n2 <int></int>	statistic <dbl></dbl>	df <dbl></dbl>	q <ldb></ldb>
1 weight_2	0	1	236	64	0.1216377	102.6969	0.903
1 row							

Notice the degrees of freedom has decimals. This is because the <code>t_test()</code> function defaults to var.equal = FALSE.

Variances equal

college %>%

t_test(weight_2 ~ smokes, var.equal = TRUE)

.y.	group1	group2	n1 n2	statistic df	р
<chr></chr>	<chr></chr>	<chr></chr>	<int> <int></int></int>	<dbl> <dbl></dbl></dbl>	<dbl></dbl>
1 weight_2	0	1	236 64	0.1191742 298	0.905
1 row					

Detailed t-test results

You can also asked for detailed results.

	estimate	estimate1	estimate2 .y.	group1	group2	n1	n2 \
	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<chr></chr>	<chr></chr>	<int><</int>	<int></int>
1	0.2473517	175.9661	175.7188 weight_2	0	1	236	64
1 r	ow 1-9 of 16	columns					

Alternative hypothesis

The default alternative hypothesis is a **two-sided hypothesis** that the mean difference is not equal to 0.

college %>%
 t_test(weight_2 ~ smokes, var.equal = TRUE, alternative = "two.sided")

What if you have a **one-sided hypothesis**?

```
college %>%
  t_test(weight_2 ~ smokes, var.equal = TRUE, alternative = "greater")
college %>%
  t test(weight 2 ~ smokes, var.equal = TRUE, alternative = "less")
```


Alternative hypothesis

college %>%

t_test(weight_2 ~ smokes, var.equal = TRUE, detailed = TRUE, alternative = "two.sided")

	estimate	estimate1	estimate2 .y.	group1	group2	n1	n2 、
	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<chr></chr>	<chr></chr>	<int><</int>	<int></int>
1	0.2473517	175.9661	175.7188 weight_2	0	1	236	64
1 r	ow 1-9 of 16	columns					

college %>%
 t test(weight 2 ~ smokes, var.equal = TRUE, detailed = TRUE, alternative = "greater")

	estimate <dbl></dbl>	estimate1 <dbl></dbl>	estimate2 .y. <dbl> <chr></chr></dbl>		group2 <chr></chr>		
1	0.2473517	175.9661	175.7188 weight_2	0	1	236	64
1 row 1-9 of 16 columns							
R for	the Rest of Us						

Other arguments in the t-test

college %>%

t test(weight 2 ~ smokes, detailed = TRUE, mu = 1)

	estimate	estimate1	estimate2 .y.	group1	group2	n1	n2 \
	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<chr></chr>	<chr></chr>	<int></int>	<int></int>
1	0.2473517	175.9661	175.7188 weight_2	0	1	236	64
1 row 1-9 of 16 columns							

```
college %>%
  t test(weight 2 ~ smokes, detailed = TRUE, conf.level = .99)
```

	estimate		estimate2 .y.	group1	group2 <chr></chr>	n1	n2
	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<chr></chr>	<chr></chr>	<int></int>	<int></int>
1	0.2473517	175.9661	175.7188 weight_2	0	1	236	64
1 row 1-9 of 16 columns							
R for the Rest of Us							

Your Turn

- 1. Perform an independent samples t-test to test whether there is a difference in
 exam_1 by athlete. Use var.equal = TRUE. Is there a difference? What is the
 p-value?
- 2. Perform an independent samples t-test to test whether there is a difference in
 act_english by gender. Use var.equal = TRUE. Is there a difference? What is
 the p-value?

Notice what happens since gender has 3 levels. Try out using the filter() function from dplyr to only check the difference between Female and Male students. Alternatively, check out the page on $t_test()$ to see how to use the comparisons argument to specify the groups to compare.

Dependent t-test

Independent vs dependent t-test

Independent t-test

- Between-subjects
- Independent samples
- Examine the mean difference between two unrelated groups (e.g., males and females, a group of mothers and a group of daughters)

Dependent t-test

- Within-subjects
- Dependent or paired samples
- Examine the mean difference between two related groups (e.g., same group at two time points, pairs of mothers and daughters)

Dependent t-test in R

The dependent t-test adds a new argument to the t_test() function:

paired = TRUE

dat %>%
 t test(DV ~ IV, paired = TRUE)

Converting wide to long format

Let's test the difference in means between weight_1 and weight_2.

time <chr></chr>	weight <dbl></dbl>
<chr></chr>	
1	156 158
2	158
1	176
2	179
1	169

Dependent t-test in R

.y.	group1	group2	n1	n2	statistic	df	р
<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 weight	1	2	300	300	-18.73704	299	2.35e-52
1 row							

Your Turn

- 1. Perform a dependent samples t-test to test whether there is a difference in exam scores: exam 1 and exam 2. Is there a difference? What is the p-value?
- 2. Perform a dependent samples t-test to test whether there is a difference in act_science and act_mathematics scores. Is there a difference? What is the p-value?

Don't forget: You'll need to make your data long before running your t-test.

One-way ANOVA

TRANSPORTATION

ÖF

DERT

TRANSPORTATION

DEPT

OF

One-way ANOVA

- Between-subjects
- Independent samples
- Examine the mean difference between **three or more** unrelated groups
- Tests the null hypothesis that the three or more means are the same
- To know *where* the mean differences are, we need planned contrasts or post-hoc procedures like Tukey's HSD (we'll cover that in the next video)

One-way ANOVA in R

The formatting for the one-way ANOVA is similar to that of t_test() except we replace it with anova_test.

dat %>%
 anova_test (DV ~ IV)

An example

Let's try running an one-way ANOVA with our college dataset.

Let's test whether exam 1 scores differ by grade rank (grade_class).

	t %>% anova_test(DV ~ IV)			college % anova_t	:>% .est(exam_1 ~ grade_cl	.ass)
	Effect <chr></chr>	DFn <dbl></dbl>	DFd <dbl></dbl>	F <dbl></dbl>	p p<.05 <dbl> <chr></chr></dbl>	ges <dbl></dbl>
1	grade_class	3	296	0.716	0.543	0.007
1 r	WO					

Detailed ANOVA results

```
college %>%
  anova_test(exam_1 ~ grade_class)
```

Effect	DFn DFd	F	p p<.05	ges
<chr></chr>	<dbl> <dbl></dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<dbl></dbl>
1 grade_class	3 296	0.716	0.543	0.007
1 row				

```
college %>%
  anova test(exam 1 ~ grade class, detailed = TRUE)
```

Effect	SSn	SSd	DFn DFd	F	p p<.05	ges
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl>dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<dpl></dpl>
1 grade_class	788.871	108684.9	3 296	0.716	0.543	0.007
1 row						

hccm???

college %>%
 anova_test(exam_1 ~ grade_class)

Coefficient covariances computed by hccm()

Effect	DFn DFd	F	p p<.05	ges
<chr></chr>	<dbl> <dbl></dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<dbl></dbl>
1 grade_class	3 296	0.716	0.543	0.007
1 row				

The warning Coefficient covariances computed by hccm() just tells us that it is using a heteroscedasticity-corrected coefficient covariance matrix.

Nothing for us to worry about!

Effect sizes

ges is generalized eta squared. We can change effect.size = "pes" for partial
eta squared.

college %>%	college %>%
anova_test(exam_1 ~ grade_class,	anova_test(exam_1 ~ grade_class,
effect.size = "ges")	effect.size = "pes")

Effect	DFn DFd	F	Effect	DFn	DFd	F
<chr></chr>	<dbl>dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl:< th=""><th>×dbl></th><th><dbl></dbl></th></dbl:<>	×dbl>	<dbl></dbl>
1 grade_class	3 296	0.716	1 grade_class	3	296	0.716
1 row 1-5 of 8 cc	olumns		1 row 1-5 of 8 c	olumns		

Your Turn

- 1. Perform a one-way ANOVA to test whether there is a difference in hs_gpa by grade class. Is there a difference? What is the p-value?
- 2. Perform a one-way ANOVA to test whether there is a difference in act_english by race. Is there a difference? What is the p-value?

Post hoc comparisons

Post hoc comparisons

The one-way ANOVA tests the null hypothesis that there is no mean difference between the 3+ groups. If the one-way ANOVA is statistically significant, it does not tell us *where* the differences lie.

For that, we need post hoc comparisons.*

There are many post hoc comparisons possible (e.g., Fisher's LSD, Bonferroni, Newman-Keuls, Scheffe), but we're going to focus on **Tukey's HSD** because it and does a good job protecting against Type I errors without being too conservative.

Tukey's HSD

dat %>%
 tukey_hsd (DV ~ IV)

An example

Using our previous example, let's run Tukey's HSD by testing whether exam 1 scores differ by grade rank (grade_class).

dat %>%	college %>%
<mark>tukey_hsd</mark> (DV ~ IV)	<pre>tukey_hsd(exam_1 ~ grade_class)</pre>

term	group1	group2	null.value	estimate
<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1 grade_class	Freshman	Junior	0	-0.39591206
2 grade_class	Freshman	Senior	0	3.02662315
3 grade_class	Freshman	Sophomore	0	3.06739409
4 grade_class	Junior	Senior	0	3.42253521
5 grade_class	Junior	Sophomore	0	3.46330615
6 grade_class	Senior	Sophomore	0	0.04077094

- I. - - - -

Your Turn

- 1. Perform one-way ANOVA to test whether there is a difference in hs_gpa by grade_class. Is there a difference? If so, perform a Tukey's HSD to test where the differences are. Describe the differences.
- 2. Perform one-way ANOVA to test whether there is a difference in weight_2 by gender. Is there a difference? If so, perform a Tukey's HSD to test where the differences are. Describe the differences.

Other ANOVA tests

Repeated measures ANOVA

Repeated Measures ANOVA allows us to examine designs in which the same people or samples contributed to the different means (within-groups design).

This means that all participants or cases participated in all conditions of an experiment or IV.

Repeated measures ANOVA in R

There are two ways to write the R code for a repeated measures ANOVA using anova_test: by the equation, or by specifying which variables are the DV, between-or within-subjects IVs, and wid (within-subjects identifier).

Option 1:

```
dat %>%
    anova_test(DV ~ IV + Error(id/IV))
```

Option 2:

dat %>%
 anova_test(dv = DV, wid = id, within = IV)

An example

Let's examine how exam scores (exam_1, exam_2, and exam_3) differ within individuals across time.

Notice that we'll need to make our data into *long format* to make this work, since we need the DV into into variable.

pivot_longer:

An example: Option 1

```
college %>%
  select(exam_1:exam_3, id) %>%
  pivot_longer(-id, names_to = "exam", values_to = "score", names_prefix = "exam_") %>%
  anova test(score ~ exam + Error(id/exam))
```

```
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 1 exam 2 598 87.773 3.77e-34 * 0.024
##
## $Mauchly's Test for Sphericity
## Effect W p p<.05
## 1 exam 0.771 1.58e-17 *
##
##
## $Sphericity Corrections
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 exam 0.814 1.63, 486.7 2.58e-28 * 0.818 1.64, 488.99 1.96e-28
## 1 *</pre>
```


An example: Option 2

```
college %>%
  select(exam_1:exam_3, id) %>%
  pivot_longer(-id, names_to = "exam", values_to = "score", names_prefix = "exam_") %>%
  anova_test(dv = score, wid = id, within = exam)
```

```
## ANOVA Table (type III tests)
##
## $ANOVA
## Effect DFn DFd F pp<.05 ges
## 1 exam 2 598 87.773 3.77e-34 * 0.024
##
## $Mauchly's Test for Sphericity
## Effect W pp<.05
## 1 exam 0.771 1.58e-17 *
##
##
## ##
## $Sphericity Corrections
## Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
## 1 exam 0.814 1.63, 486.7 2.58e-28 * 0.818 1.64, 488.99 1.96e-28
## p[HF]<.05
## 1 *</pre>
```

```
R for the Rest of Us
```


Factorial ANOVA

Factorial ANOVA allows us to examine two or more independent variables (IVs) simultaneously. There are several types of factorial designs:

- Independent factorial design: 2+ between-group (independent) IVs
- Repeated measures factorial design: 2+ within-group (repeated-measures) IVs
- Mixed factorial design: 1+ between-group and 1+ within-group IVs

Factorial ANOVA

To perform a factorial ANOVA in R, all you need to do is add more variables to the right hand of the tilde (~) in the ANOVA equation using either a + (does not add an interaction term) or * (adds an interaction term).

Example independent factorial design

Formula without interaction:

college %>%
 anova test(hs gpa ~ grade class + smokes) # NO INTERACTION

Effect	DFn	DFd	F	p p<.05	ges
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>	<dbl></dbl>
1 grade_class	3	295	0.841	0.473	0.008000
2 smokes	1	295	0.157	0.692	0.000533
2 rows					

Example independent factorial design

Formula with interaction:

college %>%
 anova test(hs gpa ~ grade class * smokes) # INTERACTION

Effect <chr></chr>	DFn <dbl></dbl>		F <dbl></dbl>	p p<.05 <dbl> <chr></chr></dbl>	ges <dbl></dbl>
1 grade_class	3	292	0.843	0.471	0.00900
2 smokes	1	292	0.158	0.692	0.00054
3 grade_class:smokes	3	292	1.271	0.284	0.01300
3 rows					

Your Turn

Read more about how to conduct repeated measures and factorial ANOVA designs using the resources on the R for the Rest of Us website.

Chi-square

Chi-square

The chi-square test is used to analyze categorical data (data that describe categories of entities). We can't examine categorical data using things like means or medians, so we examine counts instead.

```
college %>%
  tabyl(smokes, athlete)
```

	smokes	0	1
	<dp>></dp>	<dbl></dbl>	<dbl></dbl>
	0	156	80
	1	53	11
2 rows			

Chi-square in R: rstatix

table(college\$smokes, college\$athlete) %>%
 chisq_test()

	n	statistic	p df method	p.signif
	<int></int>	<dbl></dbl>	<dbl> <int> <chr></chr></int></dbl>	<chr></chr>
1	300	5.885766	0.0153 1 Chi-square test	*
1 r	OW			

Chi-square in R: janitor

```
college %>%
  tabyl(smokes, athlete) %>%
  janitor::chisq.test()
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: .
## X-squared = 5.8858, df = 1, p-value = 0.01526
```

Solution! Use the tidy() function in the broom package!

Image by Allison Horst

Chi-square in R: janitor

college %>%	
tabyl(smokes,	athlete) %>%
janitor::chis	q.test() %>%
tidy()	

statistic	p.value	parameter
<dbl></dbl>	<dbl></dbl>	<int></int>
5.885766	0.01526375	1
1 row 1-3 of 4 columns		

Standardized residuals

The standardized residuals tell us for that cell if the expected and observed frequency are independent. They are z-scores so values greater than 1.96 are statistically significant (p < .05).

tab <- college %>% tabyl(smokes, athlete) %>% janitor::chisq.test()
tab\$stdres

	smokes	0	1
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
0	0	-2.579349	2.579349
1	1	2.579349	-2.579349
2 rc	OWS		

Observed and expected counts

Similarly, we can ask for the observed and expected counts.

Observed	Expected
----------	----------

tab\$observed			tab\$expected		
smokes	0	1	smokes	0	1

	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
0	0	156	80	0 0	164.41333	71.58667
1	1	53	11	1 1	44.58667	19.41333
2 rc	OWS			2 rows		

Your Turn

- 1. Perform a chi-square to examine how grade_class relates to live_on_campus. What is the p-value? Is there a relationship?
- 2. If there is a significant difference, examine standardized residuals and the observed/expected frequencies to determine what grade class is more or less likely to live on campus. Interpret the results.

Dealing with small cells

Dealing with small cells

Sometimes when dealing with small cells, you will get an error that the Chi-square approximation may not be correct.

```
college %>%
filter(smokes == 1) %>%
tabyl(race, gender) %>%
chisq.test()
```

Warning in stats::chisq.test(., ...): Chi-squared approximation may be incorrect

```
##
## Pearson's Chi-squared test
##
## data: .
## X-squared = 5.2355, df = 8, p-value = 0.7321
```

There are a few things we can do to fix this problem.

1. Drop a row or column

college %>% filter(smokes == 1) %>% tabyl(race, gender)

race	Female	Male	Trans*
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dpl></dpl>
Asian	3	1	0
Bi-Racial	2	1	0
Black	5	1	0
Hispanic	7	3	1
White	20	19	1
1-5 of 5 rows			

1. Drop a row or column

college %>%	
filter(smokes == 1) %>%	
filter(gender != "Trans*") %>%	
tabyl(race, gender)	

race	Female	Male
<chr></chr>	<dbl></dbl>	<dbl></dbl>
Asian	3	1
Bi-Racial	2	1
Black	5	1
Hispanic	7	3
White	20	19
1-5 of 5 rows		

1. Drop a row or column

```
college %>%
filter(smokes == 1) %>%
filter(gender != "Trans*") %>%
tabyl(race, gender) %>%
chisq.test()
```

Warning in stats::chisq.test(., ...): Chi-squared approximation may be incorrect

```
##
## Pearson's Chi-squared test
##
## data: .
## X-squared = 3.4316, df = 4, p-value = 0.4884
```


2. Combine rows or columns so there are larger cells

college %>%
filter(smokes == 1) %>%
tabyl(race, gender)

race	Female	Male	Trans*
<chr></chr>	<dp>></dp>	<dpl></dpl>	<dbl></dbl>
Asian	3	1	0
Bi-Racial	2	1	0
Black	5	1	0
Hispanic	7	3	1
White	20	19	1
1-5 of 5 rows			

2. Combine rows or columns so there are larger cells

college %>%	
filter(smokes == 1) %>%	
<pre>mutate(URM = recode(race,</pre>	
"Bi-Racial" = 1,	
"Asian" = 0,	
"White" = 0,	
"Black" = 1,	
"Hispanic" = 1)) %>%	
tabyl(URM, gender)	

URM	Female	Male	Trans*
<dp>></dp>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	23	20	1
1	14	5	1

2 rows

2. Combine rows or columns so there are larger cells

college %>%
filter(smokes == 1) %>%
<pre>mutate(URM = recode(race,</pre>
"Bi-Racial" = 1,
"Asian" = 0 ,
"White" = 0,
"Black" = 1,
"Hispanic" = 1)) %>%
tabyl(URM, gender) %>%
chisq.test()

```
##
## Pearson's Chi-squared test
##
## data: .
## X-squared = 2.5474, df = 2, p-value = 0.2798
```


3. Both!

college %>%
filter(smokes == 1) %>%
filter(gender != "Trans*") %>%
<pre>mutate(URM = recode(race,</pre>
"Bi-Racial" = 1,
"Asian" = 0,
"White" = 0,
"Black" = 1,
"Hispanic" = 1)) %>%
tabyl(URM, gender)

URM	Female	Male
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	23	20
1	14	5
2 rows		

3. Both!

college %>%
filter(smokes == 1) %>%
filter(gender != "Trans*") %>%
<pre>mutate(URM = recode(race,</pre>
"Bi-Racial" = 1,
"Asian" = 0,
"White" = 0,
"Black" = 1,
"Hispanic" = 1)) %>%
tabyl(URM, gender) %>%
chisq.test()

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: .
## X-squared = 1.4731, df = 1, p-value = 0.2249
```

Correlation

Correlation

Tests the relationship between two (usually) continuous variables.

Correlation in R

dat %>%

cor_test(var1, var2)

An example

Let's look at the correlation between exam_1 and exam_2.

```
dat %>%
    cor_test(var1, var2)
```

college %>%
 cor_test(exam_1, exam_2)

var1	var2	cor	statistic	р	conf.low	conf.high method
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> <chr></chr></dbl>
exam_1	exam_2	0.9	34.93659	2.17e-107	0.8717947	0.9167018 Pearson
1 row						

Multiple correlations in R

college %>%

cor_test(starts_with("exam"))

var1	var2	cor	statistic	р	conf.low	conf.high
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
exam_1	exam_1	1.00	Inf	0.00e+00	1.0000000	1.0000000
exam_1	exam_2	0.90	3.493659e+01	2.17e-107	0.8717947	0.9167018
exam_1	exam_3	0.81	2.397949e+01	1.59e-71	0.7690092	0.8469762
exam_2	exam_1	0.90	3.493659e+01	2.17e-107	0.8717947	0.9167018
exam_2	exam_2	1.00	1.158479e+09	0.00e+00	1.0000000	1.000000
exam_2	exam_3	0.91	3.861393e+01	5.27e-118	0.8918864	0.9300190
exam_3	exam_1	0.81	2.397949e+01	1.59e-71	0.7690092	0.8469762
exam_3	exam_2	0.91	3.861393e+01	5.27e-118	0.8918864	0.9300190
exam_3	exam_3	1.00	1.158479e+09	0.00e+00	1.000000	1.000000

9 rows | 1-7 of 8 columns

Correlation Matrix in R

```
college %>%
    cor_mat (starts_with("exam"))
```

	rowname <chr></chr>	exam_1 <dbl></dbl>	exam_2 <dbl></dbl>	exam_3
1	exam_1	1.00	0.90	0.81
2	exam_2	0.90	1.00	0.91
3	exam_3	0.81	0.91	1.00
3 r	OWS			

Correlation Matrix in R: upper or lower triangle

```
college %>%
  cor_mat(starts_with("exam")) %>%
  pull_lower_triangle()
```

	rowname <chr></chr>	exam_1 <chr></chr>	exam_2 <chr></chr>	exam_3 <chr></chr>
1	exam_1			
2	exam_2	0.9		
3	exam_3	0.81	0.91	
3 ro	OWS			

Correlation Matrix in R: p-values

college %>%
 cor_pmat (starts_with("exam"))

rowname	exam_1	exam_2	exam_3
<chr></chr>	<dp>></dp>	<dbl></dbl>	<dbl></dbl>
exam_1	0.00e+00	2.17e-107	1.59e-71
exam_2	2.17e-107	0.00e+00	5.27e-118
exam_3	1.59e-71	5.27e-118	0.00e+00
3 rows			

Correlation Matrix in R: combined

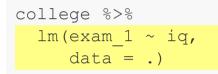
```
college %>%
  cor_mat(starts_with("exam")) %>%
  cor_mark_significant()
```

rowname <chr></chr>	exam_1 <chr></chr>	exam_2 <chr></chr>	exam_3 <chr></chr>
exam_1			
exam_2	0.9****		
exam_3	0.81****	0.91****	
3 rows			

Your Turn

1. Perform a correlation among the four ACT scores. Which two scales of the ACT have the highest correlation? Which two scales have the lowest correlation?

Regression


Three basic types of regression

- 1. Linear regression has a single independent variable (IV)
- 2. Multiple regression has multiple IVs
- 3. Hierarchical regression has multiple IVs across multiple "steps"

All three use the lm() function in the stats package.

Linear regression

##			
##	Call:		
##	<pre>lm(formula =</pre>	exam_1 ~ iq, dat	a = .)
##			
##	Coefficients:		
##	(Intercept)	iq	
##	50.089	0.016	

Linear regression

college %>%
 lm(exam_1 ~ iq,
 data = .) %>%
 summary()

```
##
## Call:
## lm(formula = exam 1 ~ iq, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.721 -12.965 0.399 13.323 48.215
##
## Coefficients:
##
   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.0891 11.8456 4.228 3.13e-05 ***
## iq
        0.0160 0.1134 0.141
                                         0.888
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.17 on 298 degrees of freedom
## Multiple R-squared: 6.681e-05, Adjusted R-squared: -0.003289
## F-statistic: 0.01991 on 1 and 298 DF, p-value: 0.8879
```


Standardized Coefficients

<pre>college %>% lm(exam_1 ~ iq, data = .) %>% lm.beta() %>% summary()</pre>	<pre>## ## Call: ## lm(formula = exam_1 ~ iq, data = .) ## ## Residuals: ## Min 1Q Median 3Q Max</pre>
Im.beta() is from the	<pre>## -51.721 -12.965 0.399 13.323 48.215 ## ## Coefficients: ## Estimate Standardized Std. Error t value Pr(> t) ## (Intercept) 50.089114 0.000000 11.845612 4.228 3.13e-05 ***</pre>
	<pre>## iq 0.015997 0.008174 0.113369 0.141 0.888 ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 19.17 on 298 degrees of freedom ## Multiple R-squared: 6.681e-05, Adjusted R-squared: -0.003289 ## F-statistic: 0.01991 on 1 and 298 DF, p-value: 0.8879</pre>

Tidy results

college %>%
 lm(exam_1 ~ iq,
 data = .) %>%
 lm.beta() %>%
 tidy()

term	estimate	std_estimate	std.error	statistic
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	50.08911424	0.00000000	11.8456116	4.2284954
iq	0.01599749	0.00817398	0.1133694	0.1411095
2 rows 1-5 of 6	6 columns			

Your Turn

1. Perform a linear regression examining how iq predicts act_reading. Ask for standardized coefficients before calling for the summary of results. Is IQ a significant predictor of ACT reading scores? If so, what is the standardized coefficient?

Multiple regression

Multiple regression in R

To perform a multiple regression, add the IVs to the right of the ~ (tilde).

Example: DV ~ IV1 + IV2

Just like with ANOVAs, you can request interactions by replacing the + with a *. **Example**: DV ~ IV1 * IV2

Multiple regression in R

```
college %>%
  lm(exam_2 ~ iq + exam_1, data = .) %>%
  lm.beta() %>%
  summary()
```

```
##
## Call:
## lm(formula = exam 2 ~ iq + exam 1, data = .)
##
## Residuals:
## Min 10 Median 30 Max
## -24.9816 -6.2163 0.1579 5.6591 24.5116
##
## Coefficients:
##
     Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 2.956034 0.000000 5.576883 0.530 0.596
## iq
     -0.007941 -0.003937 0.051843 -0.153 0.878
## exam 1 0.923936 0.896560 0.026489 34.879 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```


Multiple regression in R

```
college %>%
  lm(exam 2 ~ iq * exam 1, data = .) %>%
  lm.beta() %>%
  summary()
##
## Call:
## lm(formula = exam 2 ~ iq * exam 1, data = .)
##
## Residuals:
## Min 10 Median 30 Max
## -24.9536 -6.3219 0.2314 5.6324 24.6062
##
## Coefficients:
     Estimate Standardized Std. Error t value Pr(>|t|)
##
## (Intercept) 6.6708634 0.0000000 16.6424406 0.401 0.68883
      -0.0437046 -0.0216694 0.1596091 -0.274 0.78441
## iq
## exam 1 0.8549552 0.8296235 0.2923125 2.925 0.00371 **
## iq:exam 1 0.0006639 0.0696530 0.0028019 0.237 0.81285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Categorical predictors

```
college %>%
  lm(exam_2 ~ iq + gender, data = .) %>%
  lm.beta() %>%
  summary()
```

```
##
## Call:
## lm(formula = exam 2 ~ iq + gender, data = .)
##
## Residuals:
## Min 10 Median 30 Max
## -48.82 -13.80 0.23 14.91 49.77
##
## Coefficients:
##
     Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 48.806287 0.000000 12.142610 4.019 7.41e-05 ***
## iq
       -0.004699 -0.002330 0.115918 -0.041 0.9677
## genderMale 4.525041 0.114100 2.323535 1.947 0.0524.
## genderTrans* -7.751819 -0.083056 5.467970 -1.418 0.1573
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R for the Rest of Us
```


Changing the reference level

```
college %>%
  mutate(gender = fct_relevel(gender, levels = "Trans*", "Female", "Male")) %>%
  lm(exam_2 ~ iq + gender, data = .) %>%
  lm.beta() %>%
  summary()
```

```
##
## Call:
## lm(formula = exam 2 ~ iq + gender, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.82 -13.80 0.23 14.91 49.77
##
## Coefficients:
##
    Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 41.054468 0.000000 13.013549 3.155 0.00177 **
## iq -0.004699 -0.002330 0.115918 -0.041 0.96769
## genderFemale 7.751819 0.196817 5.467970 1.418 0.15734
## genderMale 12.276860 0.309564 5.507382 2.229 0.02655 *
## ---
```

Your Turn

1. Perform a multiple regression examining how both iq and act_science predict act_reading. Ask for standardized coefficients before calling for the summary of results. Which (if any) of the IVs are significant predictors? Based on the standardized coefficient, which is the stronger predictor of ACT readings cores?

Hierarchical regression

Hierarchical regression

Hierarchical regression takes a *little* more work. Here are the steps:

- 1. Perform a regression with your first set of predictors.
- 2. Perform a regression *adding* your second set of predictors.
- 3. Run anova () comparing the two models.

Hierarchical regression in R

Step 1:

lm1 <-

college %>%
lm(exam_2 ~ iq, data = .) %>%
lm.beta()

Step 3:

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dpl></dpl>
1	298	116259.81	NA	NA	NA	NA
2	297	22813.04	1	93446.77	1216.571	4.854822e-107

0

R for the Rest of Us

Step 2:

lm2 <-											
college	%	>%									
lm(exam_	_2	~	iq	+	exam	_1,	data	=	.)	응>응	
lm.beta	()										

Your Turn

Read more about hierarchical regression with the resources below.

Reliability

Reliability

When working with scales, we want to see how well items "hang together." This is called internal consistency, which is a type of reliability.

You are likely familiar with Cronbach's alpha as a measure of internal consistency.

However, Cronbach's alpha has assumptions your data *may not* meet. For that reason, I recommend using omega instead.

Assumptions of Cronbach's alpha

- 1. Scale is unidimensional
- 2. Scale items are continuous and normally distributed
- 3. Tau equivalence
- 4. Errors of the items do not covary

Tau equivalence

Tau equivalent

Not Tau equivalent

ltem	Std. Loading
Q1	.711
Q2	.714
Q3	.716
Q4	.709
Q5	.721

In my experience running lots of factor analyses, I almost never have tau equivalence.

Covarying item errors

Some items may be more related to other items in the scale for a variety of reasons:

- The items are very similarly worded
- The items measure essentially the same thing
- Order of items
- Speeded tests
- Transient responses where feelings or opinions may change over the course of the scale
- Unmodeled multidimensionality of the scale

Omega

Omega is designed for scales that are not tau equivalent (also called congeneric). Most of our scales are congeneric!

Therefore, I recommend you always use omega instead of alpha!

The values are interpreted just the same as you would alpha. It will just be a less biased estimate of the internal consistency of your scale, especially if you do not meet the assumptions of alpha.

Omega and alpha in R

library(psych)

omega(dat)

alpha(dat)

An example: omega

```
college %>%
  select(starts_with("swls_time1")) %>%
  omega()
```

```
      Image reports represent to the factor in the factor in
```

```
Loading required namespace: GPArotation
```

```
The estimated weights for the factor scores are probably incorrect. Try a different
factor score estimation method.Omega
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
    digits = digits, title = title, sl = sl, labels = labels,
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
    covar = covar)
Alpha:
                       0.96
G.6:
                       0.96
Omega Hierarchical:
                       0.92
Omega H asymptotic:
                       0.94
                       0.98
Omega Total
```


□ ☆ ×

An example: omega

```
college %>%
  select(starts_with("swls_time1")) %>%
  omega()
```

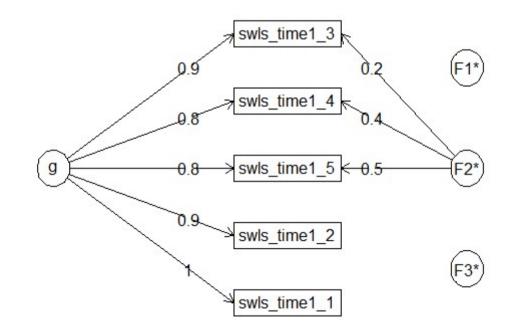
Leading reported nervoyane. Observation The associated integral for the factor source are producibly internetial. They a different factor source estimation method longs facility approaches an internet - stantare, for - for, key -		Gringe
$ \begin{array}{l} \max_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	data.frame	
R Console	5 x 7	0

```
Loading required namespace: GPArotation
```

```
The estimated weights for the factor scores are probably incorrect. Try a different
factor score estimation method.Omega
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
    digits = digits, title = title, sl = sl, labels = labels,
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
    covar = covar)
Alpha:
                       0.96
G.6:
                       0.96
Omega Hierarchical:
                       0.92
Omega H asymptotic:
                       0.94
Omega Total
                       0.98
```

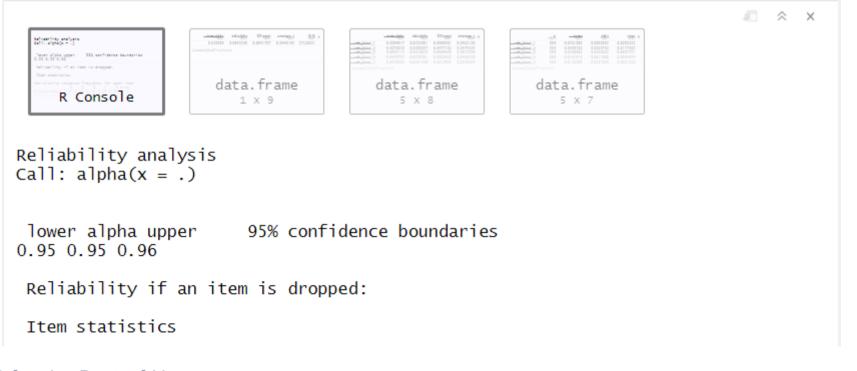

□ ☆ ×

An example: omega


```
college %>%
  select(starts_with("swls_time1")) %>%
  omega()
```

A console a series of the seri	data.frame	
--	------------	--

```
Loading required namespace: GPArotation
The estimated weights for the factor scores are probably incorrect. Try a different
factor score estimation method.Omega
Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
    digits = digits, title = title, sl = sl, labels = labels,
    plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
    covar = covar)
Alpha:
                       0.96
G.6:
                       0.96
Omega Hierarchical:
                       0.92
Omega H asymptotic:
                       0.94
Omega Total
                       0.98
```



An example: omega


```
college %>%
select(starts_with("swls_time1")) %>%
alpha()
```


##		1	2	3	4	5	miss
##	swls_time1_1	0.236666667	0.1900000	0.1900000	0.1833333	0.2000000	0
##	swls_time1_2	0.110000000	0.2400000	0.3700000	0.1933333	0.08666667	0
##	swls_time1_3	0.033333333	0.4333333	0.1600000	0.3333333	0.0400000	0
##	swls_time1_4	0.01000000	0.3166667	0.4033333	0.2533333	0.01666667	0
##	swls time1 5	0.006666667	0.4433333	0.2066667	0.3333333	0.01000000	0

raw_alpha	std.alpha	G6(smc)	average_r	S/N	ase
<dpl></dpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.953686	0.9645886	0.9641767	0.8449108	27.23951	0.003575771
1 row 1-7 of 10 cc	olumns				

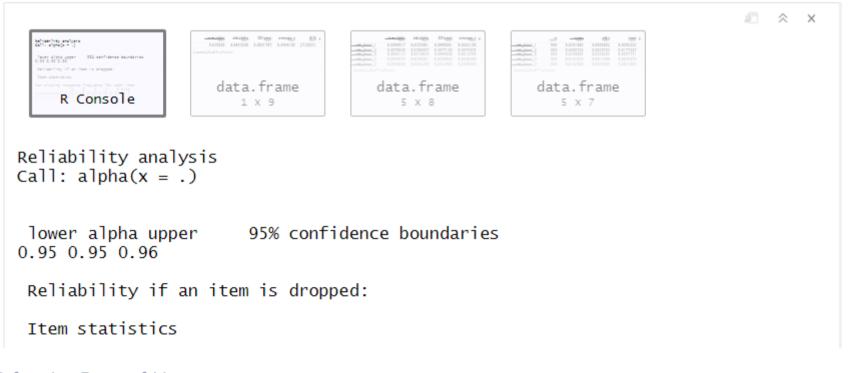
	raw_alpha	std.alpha	G6(smc)	average_r	S/N
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
swls_time1_1	0.9504017	0.9552601	0.9466861	0.8422180	21.35144
swls_time1_2	0.9370956	0.9569307	0.9477102	0.8474353	22.21838
swls_time1_3	0.9345117	0.9519053	0.9494920	0.8318784	19.79230
swls_time1_4	0.9470757	0.9573201	0.9526423	0.8486580	22.43021
swls_time1_5	0.9453626	0.9591266	0.9512468	0.8543644	23.46581
1-5 of 5 rows 1-6 of 9 columns					

	n <dbl></dbl>	raw.r <dbl></dbl>	std.r <dbl></dbl>	r.cor <dbl></dbl>	r.drop <dbl></dbl>
swls_time1_1	300	0.9531068	0.9393632	0.9268222	0.9093061
swls_time1_2	300	0.9400729	0.9326738	0.9177395	0.9035852
swls_time1_3	300	0.9509995	0.9526205	0.9397771	0.9236305
swls_time1_4	300	0.9181619	0.9311060	0.9084674	0.8850635
swls_time1_5	300	0.9122396	0.9237894	0.9021638	0.8718080
1-5 of 5 rows 1-6 of 8 columns					

Your Turn

1. Perform a test of internal consistency using both omega and alpha on the SWLS scale at time 2. Does the scale have good internal consistency at time 2, as well?

Extracting output


Extracting output

So you've got your output...

what next?

college %>%
select(starts_with("swls_time1")) %>%
alpha()

rel <- college %>%
 select(starts_with("swls_time1")) %>%
 alpha()

rel\$alpha.drop

	raw_alpha	std.alpha	G6(smc)	average_r	S/N
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
swls_time1_1	0.9504017	0.9552601	0.9466861	0.8422180	21.35144
swls_time1_2	0.9370956	0.9569307	0.9477102	0.8474353	22.21838
swls_time1_3	0.9345117	0.9519053	0.9494920	0.8318784	19.79230
swls_time1_4	0.9470757	0.9573201	0.9526423	0.8486580	22.43021
swls_time1_5	0.9453626	0.9591266	0.9512468	0.8543644	23.46581
1-5 of 5 rows	1-6 of 9 columns				

rel\$alpha.drop %>%	
select(std.alpha) %>%	
rownames_to_column("var")	응>응
arrange(std.alpha)	

var	std.alpha
<chr></chr>	<dbl></dbl>
swls_time1_3	0.9519053
swls_time1_1	0.9552601
swls_time1_2	0.9569307
swls_time1_4	0.9573201
swls_time1_5	0.9591266
1-5 of 5 rows	

drop <-

rel\$alpha.drop %>%
select(std.alpha) %>%
rownames_to_column("var") %>%
arrange(std.alpha)

drop <- rel\$alpha.drop %>%
select(std.alpha) %>%
rownames_to_column("var") %>%
arrange(std.alpha)

rel\$total %>%	
select(std.alpha) %>%	
rownames_to_column("var") %>%	
bind_rows(drop) %>%	
<pre>mutate(std.alpha = round(std.alpha,</pre>	3))

var	std.alpha
<chr></chr>	<dpl></dpl>
	0.965
swls_time1_3	0.952
swls_time1_1	0.955
swls_time1_2	0.957
swls_time1_4	0.957
swls_time1_5	0.959
6 rows	

Another example: Im()

```
lmbeta <- college %>%
lm(exam_1 ~ iq, data = .) %>%
lm.beta() %>%
summary()
```

📧 inferential-stats-course - master - RS	tudio Source Editor		_		\times	
Q. Imbeta ×						
(In the second s			Q,			
Name	Туре	Value				
🗢 Imbeta	list [11] (S3: summary.lm.beta, su	List of length 11				
💿 call	language	lm(formula = exam_1 ~	iq, data = .)			
terms	formula	exam_1 ~ iq				
residuals	double [300]	15.23 7.31 24.23 15.20 -40.56 -24.74				
coefficients	double [2 x 5]	5.01e+01 1.60e-02 0.00	e+00 8.17e-0	3 1.18e+	-01	
 aliased 	logical [2]	FALSE FALSE				
sigma	double [1]	19.16604				
df	integer [3]	2 298 2				
r.squared	double [1]	6.681395e-05				
adj.r.squared	double [1]	-0.003288667				
fstatistic	double [3]	0.0199 1.0000 298.0000				
cov.unscaled	double [2 x 2]	0.381988 -0.003640 -0.0	03640 0.000	035		
Imbeta						

Another example: Im()

lmbeta\$coefficients

# #	Estimate	Standardized	Std. Error	t value	Pr(> t)
## (Intercept)	50.08911424	0.0000000	11.8456116	4.2284954	3.133076e-05
## iq	0.01599749	0.00817398	0.1133694	0.1411095	8.878788e-01

Another example: Im()

lmbeta\$adj.r.squared

[1] -0.003288667

Your Turn

- 1. Perform a test of internal consistency using omega on the SWLS scale at time 1.
- 2. Extract the omega.tot information from the list. Round it to two decimals. What is your omega value?

Reporting results

modelsummary package

Creates highly customizable tables and plots to summarize statistical models and data in R.

		Fe	Female		Male	
Species	Distribution	Avg.	Std. Dev.	Avg.	Std. Dev.	
APELLEY		188	5.6	192	6.6	
CHINETRAPY		192	5.8	200	6.0	
GLATOO!		213	3.9	222	5.7	

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

apa package

The **apa** package functions help you format statistical tests according to the American Psychological Association (APA) guidelines. It supports the following tests from the **stats** package:

- t-test: t.test() → t_apa()
- ANOVA: aov() → anova_apa()
- chi-square: chisq.test() → chisq_apa()
- correlation: cor.test() → cor_apa()

```
college %>%
  t.test(exam_1 ~ athlete, data = ., var.equal = TRUE) %>%
  t_apa()
```

```
## t(298) = -2.25, p = .025, d = -0.26
```


apa package: inline code

If you're writing your results directly in R, you can use inline code to embed your statistics in your text wrapping the statistic with apa().

For example

This: There was a strong, positive relationship between exam 1 and exam 2 scores, 'r apa(cor.test(college\$exam_1, college\$exam_2))'.

Note: use backticks, not apostrophes.

Turns into this: There was a strong, positive relationship between exam 1 and exam 2 scores, r(298) = .90, p < .001.

papaja package

papaja stands for Preparing APA Journal Articles. It is an R Markdown template that produces APA manuscripts.

It works with the **apa**, **APAstats**, and **apaTables** packages for easy reporting in accordance with APA guidelines.

Testing assumptions

Testing assumptions

Our parametric statistics all have four main assumptions that we should test and verify *before* running our statistical analyses:

- 1. Our data is normally distributed.
- 2. Data between groups have equal (homogeneous) variances.
- 3. Scores are **independent** from one another. *Note*: this is not an assumption of within subjects designs like the dependent t-test or repeated measures ANOVA.
- 4. Data is at the **interval or ratio** level. *Note*: likert-scale data is *technically* at the ordinal level, and there is research to suggest it shouldn't be analyzed at the interval/ratio level.

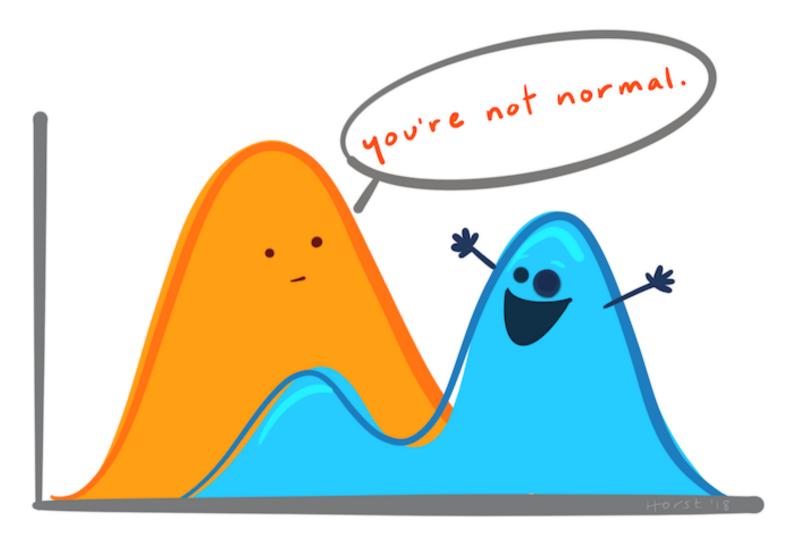
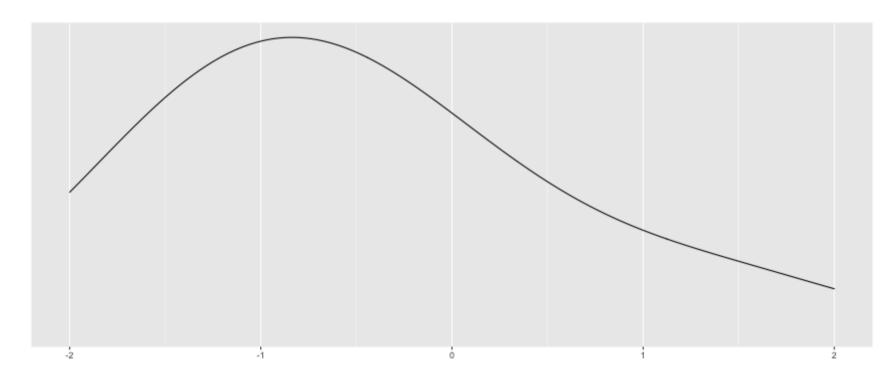
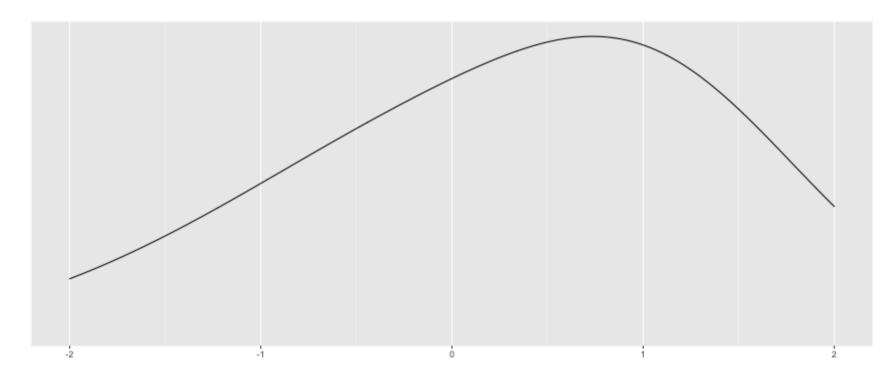



Image by <u>Allison Horst</u>

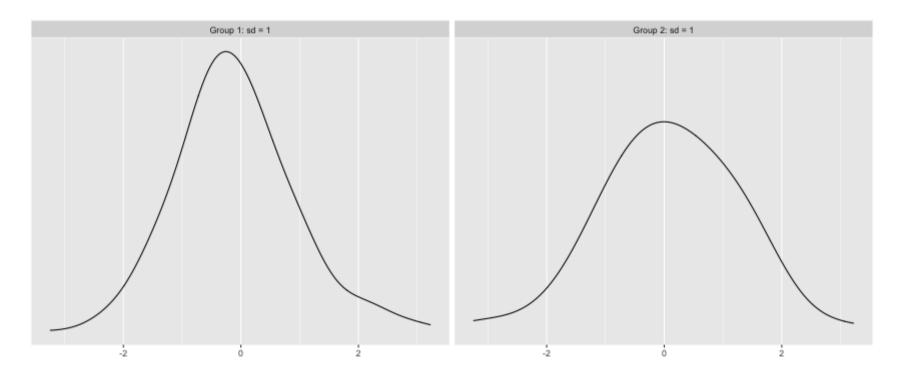
Normality


Normally distributed:

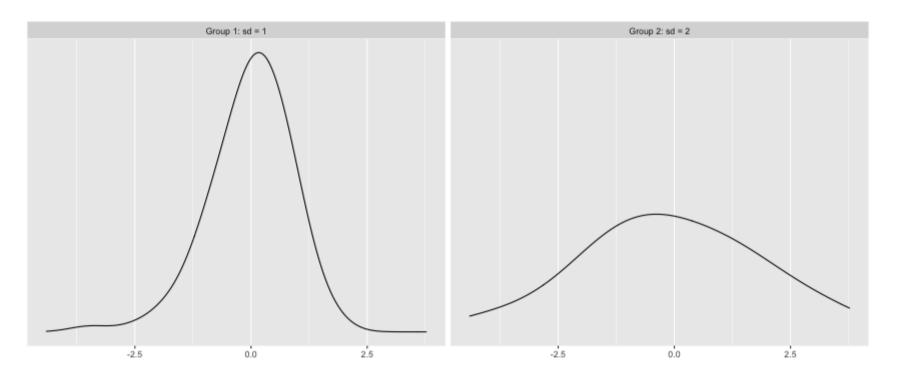
Normality


Positively skewed:

Normality


Negatively skewed:

Homogeneity of variances


Equal variances or homogeneity of variances (assumption met):

Homogeneity of variances

Unequal variances or heterogeneity of variances (assumption not met):

Independent data

This cannot be explicitly tested, but is a function of you knowing your data.

- Are some data points more related to one another?
- Are some participants related to one another more than with other participants?
- Do you have nested data?

If you said "yes" to any of these questions, you likely violate this assumption.

Interval or ratio data

Interval and ratio data are:

- Ordered variables
- That have proportionate intervals between levels
- (Ratio variables can accommodate an absolute zero)

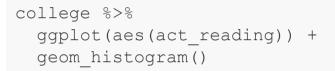
Ordinal variables do not have proportionate intervals between levels.

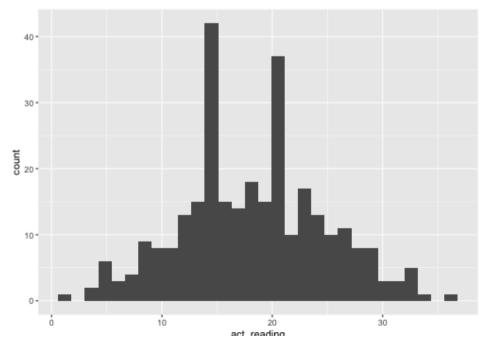
People working with likert-scales (e.g., on a 1-7 scale) often *assume* that people respond to them as if response options are proportionate, but research suggests they are *not* proportionate.

Your Turn

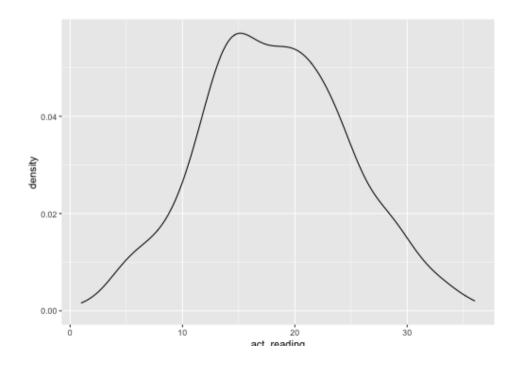
1. Read through the documents for more information on the importance of testing the assumptions of the statistics you perform.

Testing for hormality

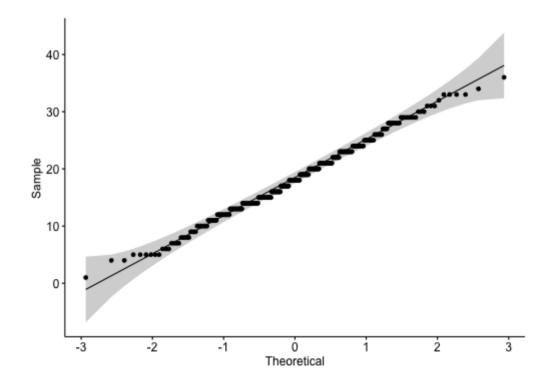

Testing for normality


There are a few basic ways to test whether your DV is normally distributed:

- 1. Histogram or density plots
- 2. q-q plots
- 3. Shapiro-Wilks test



Histogram and density plots

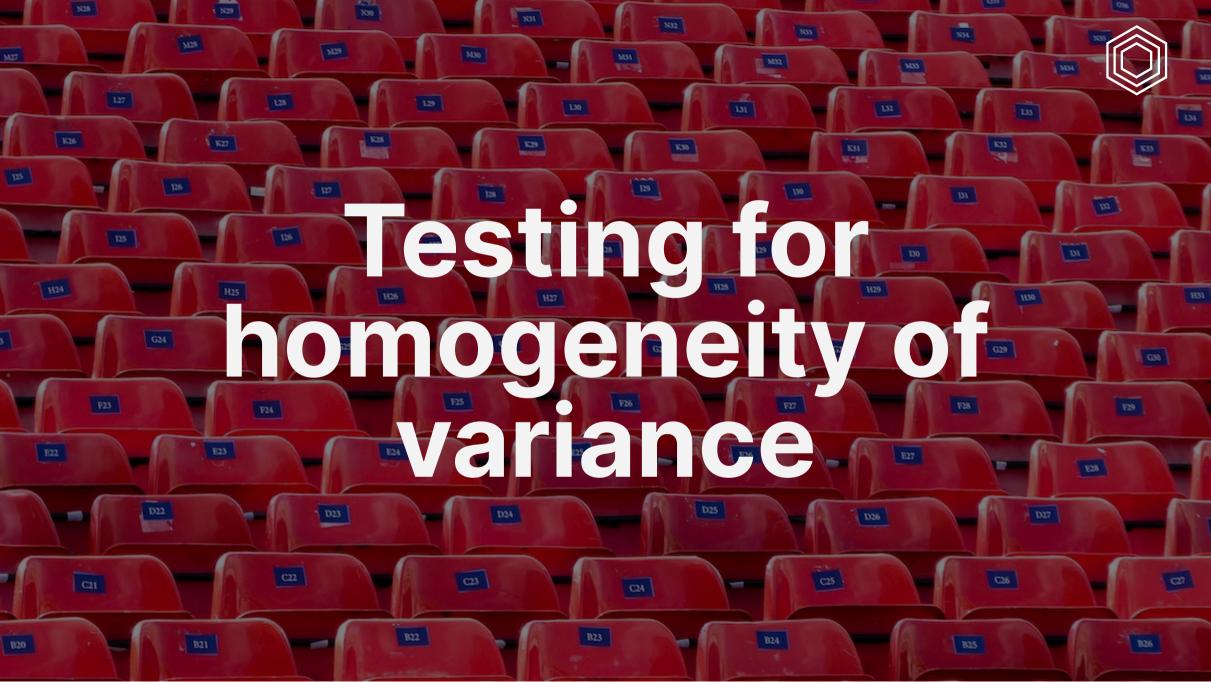

college %>%
ggplot(aes(act_reading)) +
geom density()

q-q plots

college %>%
ggqqplot("act_reading") ## ggpubr package

Shapiro-Wilks test

college %>%
 shapiro test(act reading) ## rstatix package

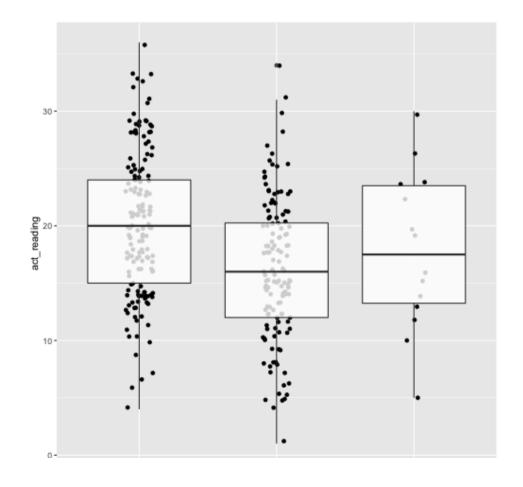

variable	statistic	р
<chr></chr>	<dbl></dbl>	<dpl></dpl>
act_reading	0.9937468	0.2503583
1 row		

When Shapiro-Wilks is *not statistically significant* then you have evidence that the data is normally distributed.

Your Turn

1. Using each of the three methods, test whether age is normally distributed. Come to a conclusion: is age normally distributed?

Testing for homogeneity of variance


Two basic methods for testing for homogeneity of variance:

- Graph the data by groups
- Levene's test

Graph the data by groups

```
college %>%
ggplot(aes(gender, act_reading)) +
geom_jitter(width = .1) +
geom boxplot(alpha = .8)
```


Levene's test

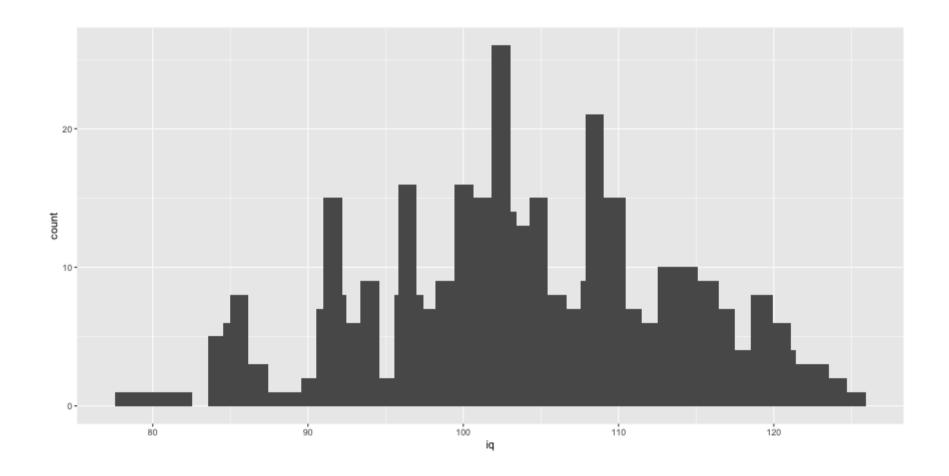
college %>%
 levene test(act reading ~ gender) ## rstatix package

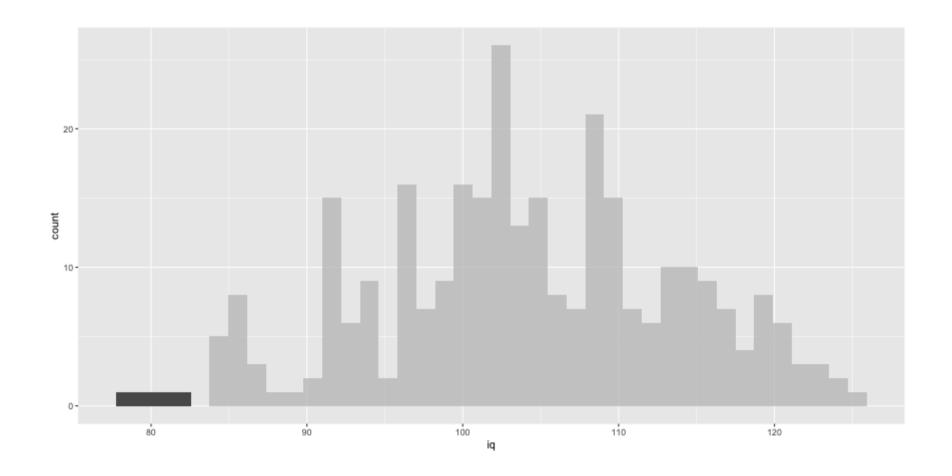
df1	df2	statistic	р
<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
2	297	0.3434131	0.7096264
1 row			

Just like Shapiro-Wilk's test, when Levene's test is *not statistically significant* then you have evidence that the data has homogeneous (equal) variances.

Your Turn

1. Using each of the two methods, test whether the variance of weight_1 differs by whether someone smokes. Come to a conclusion: is there homogeneity of variance in weight by smoking status?


io atec ssumption


Violated assumptions

- 1. Winsorize outliers
- 2. Transform the data
- 3. Use the non-parametric equivalent statistic

id	iq
<dbl></dbl>	<dbl></dbl>
16	78
173	80
37	81
277	82
97	84
113	84
134	84
152	84
261	84
23	85
1-10 Previous 1	<u>2 3 4 5 30 Next</u>

college %>%
 select(id, iq) %>%
 arrange(iq)

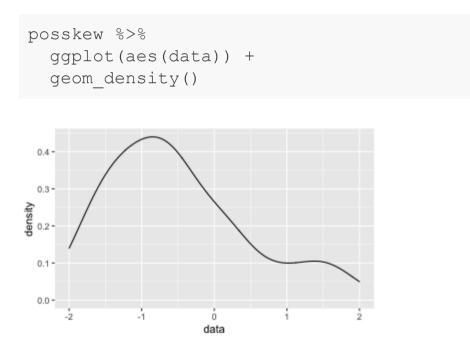
college %>%
select(id, iq) %>%
arrange(iq) %>%
<pre>mutate(iq = DescTools::Winsorize(iq,</pre>
minval = 84,
maxval = 125))

Winsorize() is from the DescTools package.

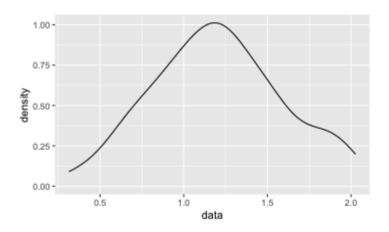
id	iq
<dbl></dbl>	<dbl></dbl>
16	84
173	84
37	84
277	84
97	84
113	84
134	84
152	84
261	84
23	85
1-10 Previous 1	<u>2 3 4 5 30 Next</u>

Transform the data

Corrects for positive skew and unequal variances:


- Log: log(x)
- Square Root: sqrt(x)
- Reciprocal: (1/x)

Corrects for negative skew:


• Reverse score: Reverse the score ((MAX+1)-x) then do one of the prior transformations.

Transform data: An example

posskew %>%		
<pre>mutate(data = sqrt(2.1 + data))</pre>	୫ <i>></i> ୫	
ggplot(aes(data)) +		
geom_density()		

??? Explain the 2.1 was because can't take square roots of zero or negative values, so needed to shift values up.

Non-parametric tests

- Used when removing outliers or transforming data still does not help you meet the assumptions of the parametric test
- Has less restrictive assumptions than parametric tests
- Does not rely on a parametric (i.e., normal) distribution!

Parametric Test	Non-parametric equivalent
Independent t-test	Mann-Whitney test
Dependent t-test	Wilcoxon Signed Range test
One-way ANOVA	Kruskal-Wallis test
Repeated-measures ANOVA	Friedman's ANOVA test

Your Turn

 Try the various transformations on the age variable. Do any of them improve the normality of the variable? Test using the shapiro_test() function as you learned in the "Testing assumptions" lesson.