

Advanced Data Wrangling and Analysis

Going Deeper with R

Importing Data

Downloading Data Directly

The download.file() function lets us download files directly from websites.

download.file(url, destfile = "data-raw/name-of-file.xlsx")

Importing Excel Files

R for the Rest of Us

Importing Excel Files

Importing Excel Files

```
clean names()
```

state <chr></chr>	number_of_german_speakers_2017 <chr></chr>
Alabama	426
Alaska	331
Arizona	636
Arkansas	-
California	440
1-5 of 51 rows 1-2 of 4 columns	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

Other Packages for Importing Data

Got SAS, Stata, or SPSS data? Use the <u>haven package</u>.

Other Packages for Importing Data

The <u>rio package</u> makes it as simple as possible to import and export data.

You give it the location of the data file in the import () function and it autodetects the file type.

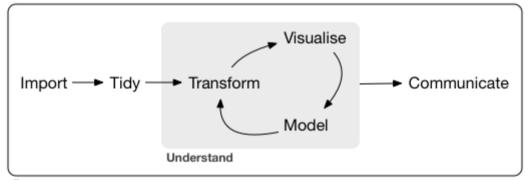
My Turn

Throughout, I'll be working with <u>data on third grade math proficiency in Oregon schools</u>.

I'll do the following:

- 1. Create a new project
- 2. Create a new R script file where I'll do all of my data cleaning work
- 3. Download math proficiency scores from 2017-2018 and 2018-2019 and put them in a data-raw folder
- 4. Import the two spreadsheets into two data frames (math_scores_17_18 and math_scores_18_19)

Your Turn


You'll be working with data on <u>Oregon school enrollment by race/ethnicity</u>.

- 1. Create a new project. Make sure you put it somehwere you'll be able to find it again later!
- 2. Download the two files (links below) using the download.file() function into a dataraw folder (which you'll need to create)
- 3. Create a new R script file where you'll do all of your data cleaning work
- 4. Import the two spreadsheets into two data frames (enrollment_17_18 and enrollment_18_19)

Tidy Data

Program

R for the Rest of Us

Untidy Data

state	number_of_german_speakers_2017
<chr></chr>	<dbl></dbl>
Alabama	426
Alaska	331
Arizona	636
Arkansas	NA
California	440
1-5 of 51 rows 1-2 of 4 columns	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

Untidy Data

```
german_speakers_numeric %>%
  mutate(total = number_of_german_speakers_2017 + number_of_german_speakers_2018 + number_of_
   select(state, total)
```

state	total
<chr></chr>	<dbl></dbl>
Alabama	1532
Alaska	663
Arizona	1630
Arkansas	NA
California	1612
1-5 of 51 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

Tidy Data

state	year	number
<chr></chr>	<chr></chr>	<dbl></dbl>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u>	<u>6 31 Next</u>

Tidy Data

german_speakers_tidy %>%
group_by(state) %>%
summarize(total = sum(number, na.rm = TRUE))

	state	total
	<chr></chr>	<dbl></dbl>
1	Alabama	1532
2	Alaska	663
3	Arizona	1630
4	Arkansas	1192
5	California	1612
1-5 of	51 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

The Three Rules of Tidy Data

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table.

We'll focus on #1 and #3. To read about examples of untidy data, check out the <u>Tidy Data vignette</u>.

Let's take a look at my data and see which principles of tidy data it violates

R for the Rest of Us

Your Turn

1. Read the <u>Tidy Data vignette</u>

2. Take a look at your data and see which principles of tidy data it violates

Reshaping Data

The pivot_longer() function helps us in situations where column headers are values, not variable names.

data_frame %>%

pivot_longer(cols = columns_to_use)

state	number_of_german_speakers_2017
<chr></chr>	<chr></chr>
Alabama	426
Alaska	331
Arizona	636
Arkansas	-
California	440
1-5 of 51 rows 1-2 of 4 columns	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>


```
german_speakers %>%
    pivot_longer(cols = -state)
```

state	name	value
<chr></chr>	<chr></chr>	<chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u>	<u>6 31 Next</u>

state	year	number
<chr></chr>	<chr></chr>	<chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

Reshaping Data: pivot_wider()

year <chr></chr>	Alabama <chr></chr>	Alaska <chr></chr>		Arkansas <chr></chr>
number_of_german_speakers_2017	426	331	636	-
number_of_german_speakers_2018	395	201	858	635
number_of_german_speakers_2019	711	131	136	557
3 rows 1-5 of 52 columns				

My Turn

I'll do the following to create a new data frame called third_grade_math_proficiency_18_19:

1. Use filter() to only keep rows where the student_group variable is "Total Population (All Students)"

2. Use filter() to only keep third grade students

3. Use select () to only keep variables related to the **number** (not percentage) of students who are proficient in math

4. Use pivot_longer() to make my data frame tidy

Your Turn

Do the following to create a new data frame called enrollment_by_race_ethnicity_18_19:

- 1. Start with the enrollment_18_19 data frame
- 2. select() the district_id variable as well as those about number of students by
 race/ethnicity and get rid of all others (hint: use the <u>contains()</u> helper function
 within select())
- 3. Use pivot_longer() to convert all of the race/ethnicity variables into one variable
- 4. Within pivot_longer(), use the names_to argument to call that variable race_ethnicity
- 5. Within pivot_longer(), use the values_to argument to call that variable

Dealing with Missing Data

na_if()

state	year	number
<chr></chr>	<chr></chr>	<chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u>	<u>6 _ 31 Next</u>

na_if()

na_if()

state <chr></chr>	year <chr></chr>	number <chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

replace_na()

replace_na()

state <chr></chr>	year <chr></chr>	number <chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

My Turn

I'll convert all of the missing values in the number_proficient variable to NA using
na_if()

I don't have any values where using *replace_na()* makes sense, but you'll use it shortly!

Your Turn

1. Convert all of the missing values in the number_of_students variable to NA using
na_if()

2. Convert all of the NA values you just made to O using replace_na().

Changing Variable Types

Changing Variable Types

state <chr></chr>	year <chr></chr>	number <chr></chr>
Alabama	number_of_german_speakers_2017	426
Alabama	number_of_german_speakers_2018	395
Alabama	number_of_german_speakers_2019	711
Alaska	number_of_german_speakers_2017	331
Alaska	number_of_german_speakers_2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

Changing Variable Types

```
## Error: `summarise()` argument `total` errored.
## i `total` is `sum(number)`.
## x invalid 'type' (character) of argument
```


Changing Variable Types

To change variable types, you use the mutate() function combined with as.numeric(), as.character(), etc.

	total
	<dbl></dbl>
	80314
1 row	

R for the Rest of Us

My Turn

- 1. Convert the number_proficient variable to numeric by using as.numeric()
- 2. Count the number of students at each proficiency level

Your Turn

- 1. Convert the number_of_students variable to numeric by using as.numeric()
- 2. Make sure you can use your number_of_students variable to count the total number of students in Oregon

Advanced Variable Creation

recode()

data_frame %>%
 mutate(variable = recode(variable, "old_value" = "new_value"))

recode()

recode()

state	year	number
<chr></chr>	<chr></chr>	<dbl></dbl>
Alabama	2017	426
Alabama	2018	395
Alabama	2019	711
Alaska	2017	331
Alaska	2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

if_else()

data_frame %>%
 mutate(variable = if_else(variable == "some_value",
 "if_true_value",
 "else value"))

if_else()

if_else()

state	year	number
<chr></chr>	<chr></chr>	<dbl></dbl>
Alabama	2017	426
Alabama	2018	395
Alabama	2019	711
Alaska	2017	331
Alaska	2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

str_remove()

data_frame %>%
 mutate(variable = str_remove(variable, "text to remove"))

str_remove()

str_remove()

state	year	number
<chr></chr>	<chr></chr>	<dbl></dbl>
Alabama	2017	426
Alabama	2018	395
Alabama	2019	711
Alaska	2017	331
Alaska	2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

Image courtesy of <u>Allison Horst</u>

R for the Rest of Us

parse_number()

data_frame %>%
 mutate(variable = parse_number(variable))

parse_number()

parse_number()

state	year	number
<chr></chr>	<dbl></dbl>	<dbl></dbl>
Alabama	2017	426
Alabama	2018	395
Alabama	2019	711
Alaska	2017	331
Alaska	2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u>	<u>6 _ 31 Next</u>

case_when()

```
data_frame %>%
  mutate(variable = case_when(
    variable == "some_value" ~ "new_value",
    variable == "some_other_value" ~ "new_value_2",
    variable == "some_third_value" ~ "new_value_3",
    TRUE ~ "value_for_all_observations_that_dont_match_any_above_criteria"
    ))
```


case_when()

case_when()

state	year	number
<chr></chr>	<chr></chr>	<dbl></dbl>
Alabama	2017	426
Alabama	2018	395
Alabama	2019	711
Alaska	2017	331
Alaska	2018	201
1-5 of 153 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u>	<u>5 6 31 Next</u>

More complicated case_when()

More complicated case_when()

state	year	number number_categorical
<chr></chr>	<dbl></dbl>	<dbl> <chr></chr></dbl>
Alabama	2017	426 Less than 500
Alabama	2018	395 Less than 500
Alabama	2019	711 Between 500 and 1000
Alaska	2017	331 Less than 500
Alaska	2018	201 Less than 500
1-5 of 153 rows		Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>31 Next</u>

My Turn

I'll convert all instances of the proficiency_level variable to more meaningful observations using:

```
1. recode()
```

```
2.if_else()
```

```
3. str_remove()
```

```
4. parse_number()
```

5. case_when()

I'll then use case_when() to convert the proficiency level into a dichotomous (i.e. Proficient/Not Proficient).

R for the Rest of Us

Your Turn

- 1. Remove the "x_2018_2019" portion of the race_ethnicity variable using
 str_remove()
- 2. Convert all instances of the <code>race_ethnicity</code> variable to more meaningful observations (e.g. turn "american_indian_alaska_native" into "American Indian/Alaskan Native") using any of the following:
 - o recode()
 - o if_else()
 - o case_when()

Advanced Summarizing

group_by() + mutate()

group_by() + mutate()

state	year	number	pct
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Alabama	2017	426	0.016217451
Alaska	2017	331	0.012600883
Arizona	2017	636	0.024211969
Arkansas	2017	0	0.00000000
California	2017	440	0.016750419
1-5 of 153 rows		Previous 1	<u>2 3 4 5 6 31 Next</u>

state	year	number	pct
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Ohio	2017	960	0.03654637
Delaware	2018	998	0.03721381
West Virginia	2019	974	0.03577200
3 rows			

state	year	number	pct
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Delaware	2018	998	0.03721381
1 row			

My Turn

I'll calculate the percent of students at each school who are proficient in math. To do this, I'll need to use both:

- group_by() and summarize()
- group_by() and mutate()

And I can't forget to ungroup ()!

Your Turn

Create a new variable called ${\tt pct}$ that shows each race/ethnicity as a percentage of all students in each district

You'll need to use group_by() and mutate()

Don't forget to ungroup () at the end!

Binding Data Frames

\bigcirc

bind_rows()

german_speakers_2018

state	number
<chr></chr>	<dbl></dbl>
Alabama	395
Alaska	201
Arizona	858
Arkansas	635
California	318
1-5 of 5 Previous	1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>11</u> <u>Next</u>

german_speakers_2019

state	number
<chr></chr>	<dbl></dbl>
Alabama	711
Alaska	131
Arizona	136
Arkansas	557
California	854
1-5 of 5 Previous 1	<u>2 3 4 5 11 Next</u>

bind_rows()

german_speakers_2018_2019

	state	number
	<chr></chr>	<dbl></dbl>
1	Alabama	395
2	Alaska	201
3	Arizona	858
4	Arkansas	635
5	California	318
1-5 of ⁻	102 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>21 Next</u>

bind_rows()

bind_rows()

german_speakers_2018_2019

	state	number	year
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	395	2018
2	Alaska	201	2018
3	Arizona	858	2018
4	Arkansas	635	2018
5	California	318	2018
1-5 of	102 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u>	<u>6 21 Next</u>

bind_cols()

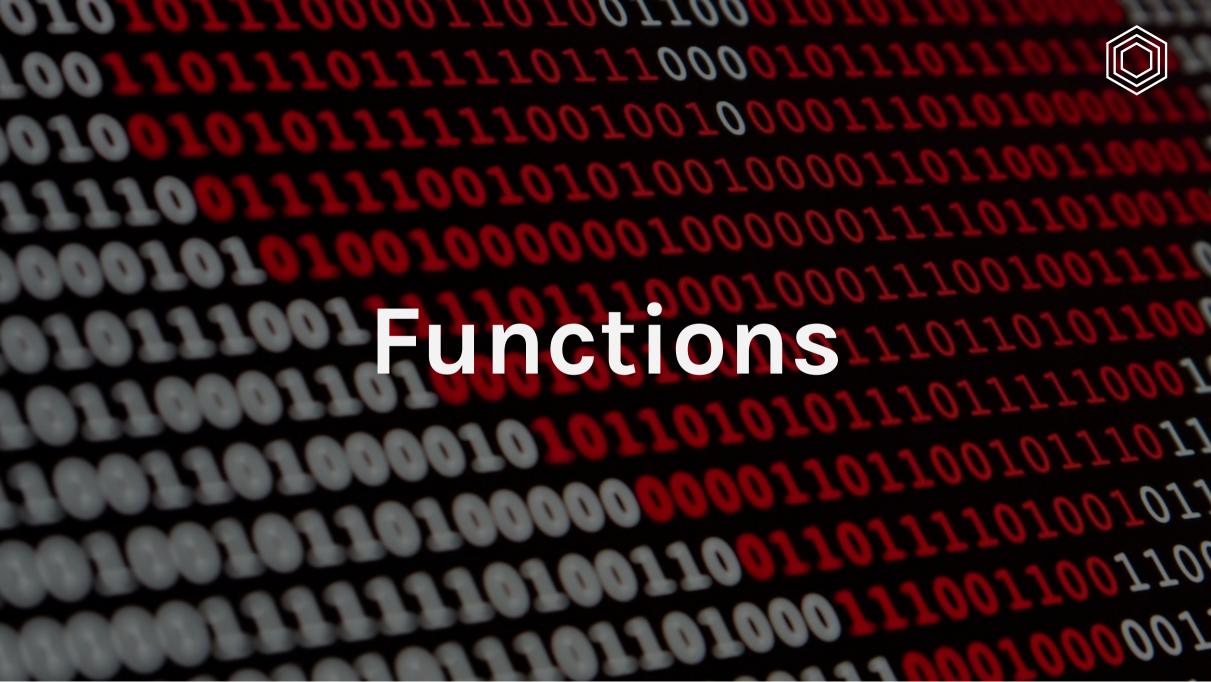
bind_cols()

german_speakers_2018_2019

	state1	number2	year3 state4
	<chr></chr>	<dbl></dbl>	<dbl> <chr></chr></dbl>
1	Alabama	395	2018 Alabama
2	Alaska	201	2018 Alaska
3	Arizona	858	2018 Arizona
4	Arkansas	635	2018 Arkansas
5	California	318	2018 California
1-5	of 51 rows 1-5 of 7 columns		Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

My Turn

I'll import 2017-2018 math proficiency data and then use bind_rows() to make a third_grade_math_proficiency data frame.


Your Turn

1. Import 2017-2018 enrollment data into a data frame called enrollment_by_race_ethnicity_17_18 and clean it using the code you used for the 2018-2019 data

2. Use bind_rows() to make a enrollment_by_race_ethnicity data frame.

Hint: You'll need to change some of your code from importing the 2018-2019 data to make the race ethnicity variable get recoded correctly!

When to Use Functions?

You should consider writing a function whenever you've copied and pasted a block of code more than twice (i.e. you now have three copies of the same code).

What is a Function?

Source: <u>R for the Rest of Us Blog</u>

R for the Rest of Us

Why Use Functions?

1. You can give a function an evocative name that makes your code easier to understand.

- 2. As requirements change, you only need to update code in one place, instead of many.
- 3. You eliminate the chance of making incidental mistakes when you copy and paste (i.e. updating a variable name in one place, but not in another).

Source: <u>R for Data Science, Chapter 19</u>

My Turn

I'll create a function to clean each year of math proficiency data, then use <code>bind_rows()</code> to bind them together

Your Turn

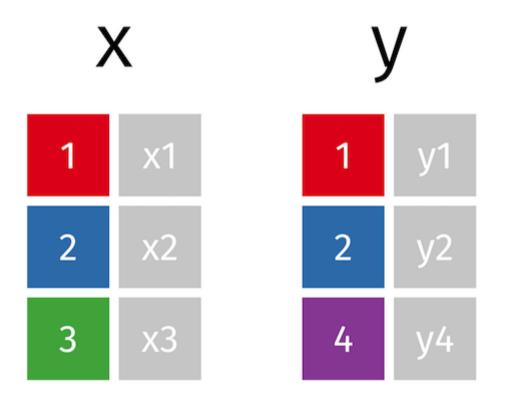
Create a function to clean each year of enrollment data, then use ${\tt bind_rows}$ () to bind them together

Arguments you'll need to use:

- Data year
- Text to remove in the str remove () line

All of the animations and explanations used here come from the <u>tidyexplain project by</u> <u>Garrick Aden-Buie</u>.

german_speakers_2019


state	number
<chr></chr>	<dbl></dbl>
Alabama	711
Alaska	131
Arizona	136
Arkansas	557
California	854
1-5 of 51 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

state	french_speakers
<chr></chr>	<dbl></dbl>
Alabama	1678
Alaska	1441
Arizona	1002
Arkansas	1558
California	1935
1-5 of 9 rows	Previous 1 <u>2</u> <u>Next</u>

Joins

R for the Rest of Us

Joins

What if we don't have a variable with the same name in both data frames?

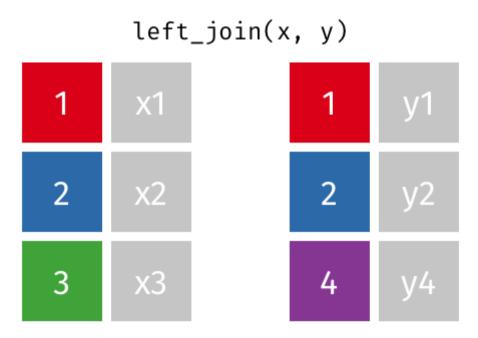
What if we need to join on multiple variables with different names in both data frames?

Which join should I use?

R for the Rest of Us

Mutating joins

A mutating join allows you to combine variables from two tables. It first matches observations by their keys, then copies across variables from one table to the other. - <u>R for Data Science</u>



left_join()

All rows from x, and all columns from x and y. Rows in x with no match in y will have NA values in the new columns.

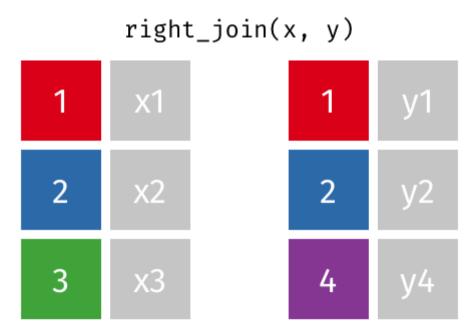
left_join()

R for the Rest of Us

left_join()

left_join(german_speakers_2019, french_speakers_2019, by = "state")

	state	number	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5 (of 51 rows	Previ	ous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>



right_join()

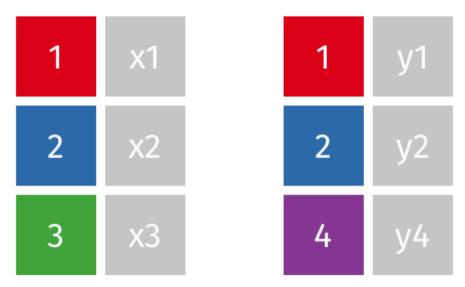
All rows from y, and all columns from x and y. Rows in y with no match in x will have NA values in the new columns.

right_join()

R for the Rest of Us

right_join()

	state	number	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5	of 9 rows		Previous 1 <u>2</u> <u>Next</u>


full_join()

All rows and all columns from both x and y. Where there are not matching values, returns NA for the one missing.

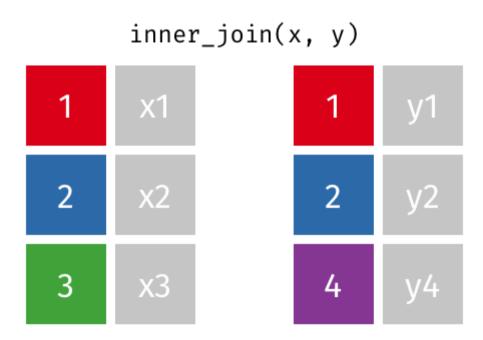
full_join()

full_join(x, y)

full_join()

full_join(german_speakers_2019,
 french_speakers_2019,
 by = "state")

	state	number	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5 (of 51 rows	Previo	ous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>



inner_join()

All rows and all columns from both x and y. Where there are not matching values, returns NA for the one missing.

inner_join()

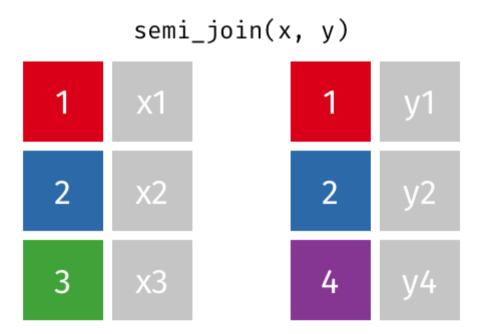
R for the Rest of Us

inner_join()

	state	number	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5	of 9 rows		Previous 1 <u>2</u> <u>Next</u>

Filtering joins

Filtering joins match observations in the same way as mutating joins, but affect the observations, not the variables - <u>R for Data Science</u>



semi_join()

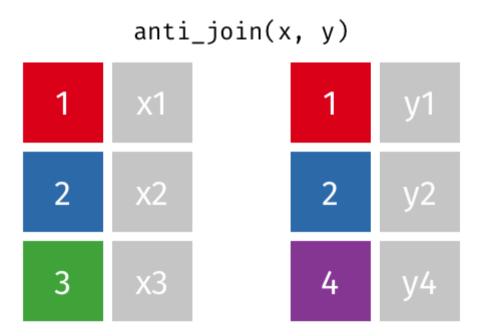
All rows from x where there are matching values in y, keeping just columns from x.

semi_join()

R for the Rest of Us

semi_join()

state	number
<chr></chr>	<dbl></dbl>
Alabama	711
Alaska	131
Arizona	136
Arkansas	557
California	854
1-5 of 9 rows	Previous 1 <u>2</u> <u>Next</u>



anti_join()

All rows from x where there are not matching values in y, keeping just columns from x.

anti_join()

R for the Rest of Us

anti_join()

anti_join(german_speakers_2019, french_speakers_2019, by = "state")

state	number
<chr></chr>	<dbl></dbl>
Florida	958
Georgia	821
Hawaii	931
Idaho	0
Illinois	827
1-5 of 42 rows	Previous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>9</u> <u>Next</u>

My Turn

- 1. Download the oregon-districts-and-schools.xlsx file into the data-raw folder.
- 2. Import a new data frame called oregon_districts_and_schools from oregondistricts-and-schools.xlsx
- 3. Merge the oregon_districts_and_schools data frame into the third_grade_math_proficiency data frame so I can see the names of the schools as well as associated districts

Your Turn

- 1. Download the oregon-districts.xlsx file into the data-raw folder.
- 2. Import a new data frame called oregon districts from oregon-districts.xlsx
- 3. Merge the oregon_districts data frame into the enrollment_by_race_ethnicity data frame so you can see the names of the districts

Renaming Variables

Renaming Variables

	state	number	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5 (of 51 rows	Previo	ous 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>11</u> <u>Next</u>

rename()

data_frame %>%
 rename(new_variable_name = old_variable_name)

rename()

rename(german_speakers = number)

french_and_german_speakers_2019

	state	german_speakers	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
З	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5	of 51 rows	Previous	1 <u>2 3 4 5 6 11 Next</u>

R for the Rest of Us

set_names()

french_and_german_speakers_2019

	state	german_speakers	french_speakers
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Alabama	711	1678
2	Alaska	131	1441
3	Arizona	136	1002
4	Arkansas	557	1558
5	California	854	1935
1-5	of 51 rows	Previous	1 <u>2 3 4 5 6 11 Next</u>

R for the Rest of Us

My Turn

I'll use rename() and/or set_names() to give the third_grade_math_proficiency
data frame more meaningful names.

Your Turn

Use either rename() or set_names() to give the enrollment_by_race_ethnicity data frame more meaningful variable names. In particular, change the pct variable to something more descriptive.

Quick Interlude to Reorganize Your Code

Your Turn

Reorganize your code so that you only create the enrollment_by_race_ethnicity data frame in one place.

Exporting Data

write_csv()

write_rds()

My Turn

- 1. Export my third_grade_math_proficiency data frame as a CSV
- 2. Export my third_grade_math_proficiency data frame as an RDS file

Your Turn

Export the enrollment_by_race_ethnicity data frame as an RDS file in the data directory (you'll need to make this directory)